promptmeteo.selector package#
Submodules#
promptmeteo.selector.base module#
- class promptmeteo.selector.base.BaseSelector(language: str, embeddings: Embeddings, selector_k: int, selector_algorithm: str)#
- Bases: - ABC- Base Selector Interface - SELECTOR = None#
 - load_example_selector(model_path: str, **kwargs) Self#
- Load a vectorstore database from a disk file 
 - property template: str#
- Selector Template 
 - property vectorstore#
- Selector Vectorstore. 
 
- class promptmeteo.selector.base.BaseSelectorSupervised(language: str, embeddings: Embeddings, selector_k: int, selector_algorithm: str)#
- Bases: - BaseSelector- run(sample: str) FewShotPromptTemplate#
- Creates the FewShotPromptTemplate from the samples of the vectorstore. 
 - train(examples: List[str], annotations: List[str]) Self#
- Creates the vectorstor with the training samples. 
 
- class promptmeteo.selector.base.BaseSelectorUnsupervised(language: str, embeddings: Embeddings, selector_k: int, selector_algorithm: str)#
- Bases: - BaseSelector- run() FewShotPromptTemplate#
- Creates the FewShotPromptTemplate from the samples of the vectorstore. 
 - train(examples: List[str], annotations: List[str] | None) Self#
- Creates the vectorstore with the training samples. 
 
- class promptmeteo.selector.base.SelectorAlgorithms(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)#
- Bases: - str,- Enum- Enum with the avaialable selector algorithms. - RELEVANCE: str = 'relevance'#
 - SIMILARITY: str = 'similarity'#
 - SIMILARITY_CLASS_BALANCED: str = 'similarity_class_balanced'#
 
promptmeteo.selector.custom_selectors module#
Custom selectors
- class promptmeteo.selector.custom_selectors.BalancedSemanticSamplesSelector(*, vectorstore: VectorStore, k: int = 6, example_keys: List[str] | None = None, input_keys: List[str] | None = None, vectorstore_kwargs: Dict[str, Any] | None = None, class_list: List[str], class_key: str)#
- Bases: - BaseExampleSelector,- BaseModel- Example selector that selects examples based on SemanticSimilarity in a balanced way. - add_example(example: Dict[str, str]) str#
- Add new example to vectorstore. 
 - class_key: str#
 - class_list: List[str]#
- element of examples metadata which contains the class 
 - example_keys: List[str] | None#
- Optional keys to filter examples to. 
 - classmethod from_examples(examples: List[dict], class_list: List[str], class_key: str, embeddings: Embeddings, vectorstore_cls: Type[VectorStore], k: int = 6, input_keys: List[str] | None = None, **vectorstore_cls_kwargs: Any)#
- Create k-shot example selector using example list and embeddings. - Reshuffles examples dynamically based on query similarity. - Parameters:
- examples – List of examples to use in the prompt. 
- class_list – list of classes of the classification problem 
- class_key – key which refers to category field in the example dictionary 
- embeddings – An initialized embedding API interface, e.g. OpenAIEmbeddings(). 
- vectorstore_cls – A vector store DB interface class, e.g. FAISS. 
- input_keys – If provided, the search is based on the input variables instead of all variables. 
- vectorstore_cls_kwargs – optional kwargs containing url for vector store 
 
- Returns:
- The ExampleSelector instantiated, backed by a vector store. 
 
 - input_keys: List[str] | None#
- Optional keys to filter input to. If provided, the search is based on the input variables instead of all variables. 
 - k: int#
- Number of examples to select per class. 
 - select_examples(input_variables: Dict[str, str]) List[dict]#
- Select which examples to use based on semantic similarity. 
 - vectorstore: VectorStore#
- Vectorstore 
 - vectorstore_kwargs: Dict[str, Any] | None#
- Extra arguments passed to similarity_search function of the vectorstore. 
 
- promptmeteo.selector.custom_selectors.sorted_values(values: Dict[str, str]) List[Any]#
- Return a list of values in dict sorted by key. 
Module contents#
- class promptmeteo.selector.SelectorFactory#
- Bases: - object- Factory of Selectors - classmethod factory_method(language: str, embeddings: Embeddings, selector_k: int, selector_type: str, selector_algorithm: str) BaseSelector#
- Returns and instance of a BaseSelector object depending on the selector_algorithm.